首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6030篇
  免费   1031篇
  国内免费   201篇
电工技术   175篇
综合类   296篇
化学工业   2298篇
金属工艺   195篇
机械仪表   203篇
建筑科学   327篇
矿业工程   115篇
能源动力   154篇
轻工业   211篇
水利工程   105篇
石油天然气   89篇
武器工业   14篇
无线电   699篇
一般工业技术   758篇
冶金工业   192篇
原子能技术   36篇
自动化技术   1395篇
  2024年   13篇
  2023年   148篇
  2022年   126篇
  2021年   411篇
  2020年   331篇
  2019年   225篇
  2018年   327篇
  2017年   284篇
  2016年   320篇
  2015年   328篇
  2014年   519篇
  2013年   416篇
  2012年   314篇
  2011年   439篇
  2010年   321篇
  2009年   327篇
  2008年   290篇
  2007年   301篇
  2006年   288篇
  2005年   206篇
  2004年   175篇
  2003年   169篇
  2002年   139篇
  2001年   107篇
  2000年   91篇
  1999年   83篇
  1998年   77篇
  1997年   75篇
  1996年   49篇
  1995年   35篇
  1994年   55篇
  1993年   42篇
  1992年   35篇
  1991年   21篇
  1990年   17篇
  1989年   16篇
  1988年   19篇
  1987年   9篇
  1986年   8篇
  1985年   13篇
  1984年   26篇
  1983年   13篇
  1982年   9篇
  1981年   8篇
  1980年   7篇
  1979年   9篇
  1978年   5篇
  1977年   7篇
  1976年   2篇
  1963年   2篇
排序方式: 共有7262条查询结果,搜索用时 22 毫秒
31.
In order to explore the effects of chlorine and fluorine on photophysical properties and the differences, in this work, we synthesized five new polymers, P1 – P5 , in which benzo[1,2-b:4,5-b]dithiophene as the electron donating and benzothiadiazole as electron withdrawing. Analysis of these five polymers showed that the introduction of Cl and F atoms can deeper the highest occupied molecular orbital of these polymers and enhance the absorption of light by the species, thereby improving Voc and Jsc. Chlorination has a stronger ability to reduce energy levels and broaden the absorption spectrum compared to fluorination. Among them, P2 showed an efficiency of 4.08% with Jsc of 11.28 mA/cm2, Voc of 0.79 V, and fill factor (FF) of 0.45. Since chlorination is easier than fluorination in terms of synthesis, it is advantageous for practical applications. Therefore, we think that chlorination should not be ignored when designing high efficiency photovoltaic materials, especially when their fluorinated counterparts have proven to have good properties.  相似文献   
32.
Photothermal effect has been widely used in many areas such as cancer therapy, photothermal energy harvesting, and laser ignition. However, exploring reliable and efficient free-standing energy converter for enhancing the photothermal performance is still a challenge. Herein, free-standing membrane based on two-dimensional MXene (Ti3C2) nanosheets and polytetrafluoroethylene (PTFE) was fabricated and characterized by X-ray diffraction, scanning electron microscopy and differential scanning calorimetry, which demonstrated a drastic temperature rise by laser irradiation and was further used as energy converter for enhancing the photothermal performance of laser ignition. Furthermore, the initiating power of the laser initiator can be largely reduced by adding a thin layer of MXene/PTFE membrane above the B/KNO3 cylinder. This work can give great promise for MXene-based membranes as the laser energy converter for reducing the initiating energy and promote the development of laser initiators with low initiating energy.  相似文献   
33.
Powders of α-TCP containing various amounts of silicon were synthesized by two different methods: Wet chemical precipitation and solid-state synthesis. The obtained powders were then physico–chemically studied using different methods: Scanning and transmission electron microscopy (TEM and SEM), energy-dispersive X-ray spectroscopy (EDS), powder X-ray diffractometry (PXRD), infrared and Raman spectroscopies (FT-IR and R), and solid-state nuclear magnetic resonance (ssNMR). The study showed that the method of synthesis affects the morphology of the obtained particles, the homogeneity of crystalline phase and the efficiency of Si substitution. Solid-state synthesis leads to particles with a low tendency to agglomerate compared to the precipitation method. However, the powders obtained by the solid-state method are less homogeneous and contain a significant amount of other crystalline phase, silicocarnotite (up to 7.33%). Moreover, the microcrystals from this method are more disordered. This might be caused by more efficient substitution of silicate ions: The silicon content of the samples obtained by the solid-state method is almost equal to the nominal values.  相似文献   
34.
This study aims to develop carbon nanotubes (CNTs) reinforced poly(vinyl alcohol) (PVA) foams as a possible material for stapedial annular ligament (SAL) application. As-grown (AG) and purified CNTs are used as reinforcing fillers for PVA foams. Uniaxial and cyclic compression tests reveal that specific modulus and energy dissipation behavior improve after reinforcing foam with CNTs. A relatively higher improvement in specific modulus is recorded for purified CNTs as they tend to produce stiffer cell walls. Thermogravimetric analysis shows thermal stability improves after addition of CNTs in PVA foams. The 50 wt % degradation temperature is higher for PVA_AG foam in comparison to neat PVA foam. Under dynamic loading storage, modulus is found to be higher for CNT doped foams with higher relative improvement with purified CNTs than AG CNTs. It is shown that reinforcing PVA foams with purified CNTs is a feasible strategy to improve their average mechanical properties and microstructure for SAL application. While the specific elastic modulus of neat PVA foam found to be in range of 0.05–0.06 MPa gcc−1 with almost zero porosity. The addition of CNTs provides a wide range of specific elastic modulus 0.1–1.3 MPa gcc−1 with an average pores size of about 300 μm. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48736.  相似文献   
35.
The heat capacity of ytterbium orthovanadate was first measured by adiabatic calorimetry in the temperature range T?=?12.28–344.06?K. No obvious anomalies were observed on the curve obtained. The values of standard thermodynamic functions in the temperature range T?=?0–400 K were calculated. Based on low-temperature calorimetry data obtained, previously published data on the high-temperature heat capacity of ytterbium orthovanadate were corrected. The anomalous contribution to heat capacity for YbVO4 was compared with the data known for YbPO4.  相似文献   
36.
IR pulsed laser radiation in air was applied to Si3N4 and Invar to obtain reliable Si3N4/Si3N4 and Si3N4/Invar adhesive bonded components. The laser pre-treatment produced a homogeneous nanostructured oxide layer on the surfaces, which effectively increased the adhesion at the adhesive/adherends interface and led to cohesive failure in the joining material. The mechanical strength of Si3N4/ Si3N4 and Si3N4/Invar joined components was measured, with and without laser nanostructuring, before and after thermal cycling from room temperature to 50?K, and it resulted that the exposure to extremely low temperatures did not affect the mechanical integrity of the joints. It was also demonstrated that this laser pre-treatment did not alter the mechanical properties of the ceramic substrate.  相似文献   
37.
Single layer and multilayer films consisting of SnO2, Ta2O5, SiO2, TiO2, indium tin oxide (ITO) and antimony tin oxide (ATO) have been prepared by sol-gel dip coating technique. All of the multilayer films contained a SiO2 top layer, which was composed of SiO2 nanoparticles. The other films had polymeric character. Obtained films were characterized by ellipsometry, XRD, AFM and SEM. Light transmittance values of the films were compared. Films other than SiO2 and Ta2O5 were found to have crystalline structure. Thickness values of the films were in the range of 30–115 nm and roughness values were in 1.2–23 nm range. Single layer porous silica provided 95% light transmittance, whereas ITO-TiO2-SiO2 multilayer film provided a light transmittance of 97.2%.  相似文献   
38.
This work focuses on the reuse of grits waste, from cellulose industry, as a raw material to replace traditional carbonate material in ceramic wall tiles. Wall tile formulations bearing up to 15?wt% of the grits waste were prepared for replacement of calcareous. The tile manufacturing route consisted of dry powder granulation, uniaxial pressing, and firing at temperatures ranging from 1100?°C to 1180?°C by using a fast-firing cycle. The wall tile specimens were tested to determine their physical and mechanical properties (linear shrinkage, water absorption, apparent porosity, apparent density, breaking strength, and flexural strength). The firing behavior, phase transformations, and microstructure were evaluated by dilatometry, XRD, and SEM. The results showed that the fired wall tile specimens are composed of anorthite and quartz, as major mineral phases, and mullite as a minor phase. It was found that the grits waste had a positive influence on the properties and microstructure of the wall tile specimens. The results also revealed that the grits waste from cellulose industry could be used as a total replacement of traditional calcareous material in wall tile formulations.  相似文献   
39.
In the present study, ablation behavior and properties of BN-MAS (magnesium aluminum silicate) composites impinged with an oxyacetylene flame at temperatures up to 3100 °C were investigated. As ablation time ranged from 5 to 30 s, the mass and linear ablation rates increased from 0.0027 g/s and 0.001 mm/s to 0.0254 g/s and 0.087 mm/s, respectively. A SiO2-rich protective oxide layer formed during the ablation process, which contributed to the oxidation resistance of the composites. Ablation products mainly consisted of magnesium-aluminum borosilicate glass, mullite, spinel and indialite. The thermal oxidation of h-BN during flame ablation and scouring of MAS by high-speed gas flow were the main ablation mechanisms.  相似文献   
40.
The negative environmental impacts of burning fossil fuels have forced the energy research community seriously to consider renewable sources, such as naturally available solar energy. This paper provides an overview of solar thermoelectric (TE) cooling systems. Thus, this review presents the details referring to TE cooling parameters and formulations of the performance indicators and focuses on the development of TE cooling systems in recent decade with particular attention on advances in materials and modeling and design approaches. Additionally, the TE cooling applications have been also reviewed in aspects of electronic cooling, domestic refrigeration, air conditioning, and power generation. Finally, the possibility of solar TE cooling technologies application in “nearly zero” energy buildings is briefly discussed, and some future research directions are included. This research shows that TE cooling systems have advantages over conventional cooling devices, including compact in size, light in weight, high reliability, no mechanical moving parts, no working fluid, being powered by direct current, and easily switching between cooling and heating modes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号